
Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 1

Chapter 1

Getting Started with
Visual Basic 2008

I’m assuming that you have installed one of the several versions of Visual Studio 2008. For this
book, I used the Professional Edition of Visual Studio, but just about everything discussed in
this book applies to the Standard Edition as well. Some of the features of the Professional Edition
that are not supported by the Standard Edition concern database tools, which are discussed in
Chapters 21 through 24 of this book.

You may have even already explored the new environment on your own, but this book starts
with an overview of Visual Studio and its basic tools. It doesn’t even require any knowledge of
VB 6, just some familiarity with programming at large. As you already know, Visual Basic 2008
is just one of the languages you can use to build applications with Visual Studio 2008. I happen
to be convinced that it is also the simplest, most convenient language, but this isn’t really the
issue; I’m assuming you have your reasons to code in VB, or else you wouldn’t be reading this
book. What you should keep in mind is that Visual Studio 2008 is an integrated environment for
building, testing, debugging, and deploying a variety of applications: Windows applications, web
applications, classes and custom controls, and even console applications. It provides numerous
tools for automating the development process, visual tools for performing many common design
and programming tasks, and more features than any author would hope to cover.

In this chapter, you’ll learn how to do the following:

◆ Navigate the integrated development environment of Visual Studio

◆ Understand the basics of a Windows application

Exploring the Integrated Development Environment
Visual Basic 2008 is just one of the languages you can use to program your applications. The
language is only one aspect of a Windows application. The visual interface of the application isn’t
tied to a specific language, and the same tools you’ll use to develop your application’s interface
will also be used by all programmers, regardless of the language they’ll use to code the application.

To simplify the process of application development, Visual Studio provides an environment
that’s common to all languages, which is known as an integrated development environment (IDE).
The purpose of the IDE is to enable the developer to do as much as possible with visual tools,
before writing code.

The IDE provides tools for designing, executing, and debugging your applications. It will be
a while before you explore all the elements of the IDE, and I will explain the various items as
needed in the course of the book. In this section, you’ll look at the basic components of the IDE

CO
PYRIG

HTED
 M

ATERIA
L

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 2

2 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

needed to build simple Windows applications. You’ll learn how its tools allow you to quickly
design the user interface of your application, as well as how to program the application.

The IDE is your second desktop, and you’ll be spending most of your productive hours in this
environment.

The Start Page
When you run Visual Studio 2008 for the first time, you will be prompted to select the type of
projects you plan to build with Visual Studio, so that the environment can be optimized for that
specific type of development. I’m assuming that you have initially selected the Visual Basic Devel-
opment settings, which will optimize your copy of Visual Studio for building Windows and web
applications with Visual Basic 2008. You can always change these settings, as explained at the end
of this section.

After the initial configuration, you will see a window similar to the one shown in Figure 1.1. The
Recent Projects pane will be empty, of course, unless you have already created some test projects.
Visual Studio 2008 will detect the settings of a previous installation, so if you’re upgrading from
an earlier version of Visual Studio, the initial screen will not be identical to the one shown in
Figure 1.1.

Figure 1.1

This is what you’ll see
when you start Visual
Studio for the first time.

On the Start Page of Visual Studio, you will see the following panes:

Recent Projects Here you see a list of the projects you opened most recently with Visual
Studio, and you can select the one you want to open again — chances are that you will con-
tinue working on the same project as the last time. Each project’s name is a hyperlink, and you
can open it by clicking its name. At the bottom of the Recent Projects section are two hyper-
links, for opening or creating another project.

MSDN: Visual Studio This section is a browser window that displays an MSDN
(the Microsoft Developer Network, which is the definitive resource for all Microsoft tech-
nologies and products) page when the computer is connected to the Internet. In this section,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 3

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 3

you will see news about Visual Studio, the supported languages, articles, and other inter-
esting bits of information.

Getting Started This section contains links to basic programming tasks in the product’s
documentation.

Visual Studio Headlines This section contains links to announcements and other news
of interest to VB developers.

Most developers will skip the Start Page. To do so, open the Tools menu and choose the
Import And Export Settings command to start a configuration wizard. In the first dialog box of
the wizard, select the Reset All Settings check box and click the Next button. The next screen
of the wizard prompts you for the location where the new settings will be saved, so that Visual
Studio can read them every time it starts. Leave the default location as is and click Next again to
see the last screen of the wizard, in which you’re prompted to select a default collection of settings.
This collection depends on the options you’ve installed on your system. I installed Visual
Studio 2008 with Visual Basic only on my system, and I was offered the following options: General
Development Settings, Visual Basic Development Settings, and Web Development Settings.
For the default configuration of my copy of Visual Studio, and for the purposes of this book, I
chose the Visual Basic Development Settings, so that Visual Studio could optimize the environ-
ment for a typical VB developer. Click the Finish button to see a summary of the process and then
close the wizard.

Starting a New Project
At this point, you can create a new project and start working with Visual Studio. To best explain
the various items of the IDE, we will build a simple form. The form is the window of your
application — it’s what users will see on their Desktop when they run your application.

Open the File menu and choose New Project, or click Create Project/Solution in the Start Page.
In the New Project dialog box that pops up (see Figure 1.2), you’ll see a list of project types you can
create with Visual Studio. The most important ones are Windows Forms Applications, which are
typical Windows applications with one or more forms (windows); Console Applications, which
are simple applications that interact with the user through a text window (the console); Windows
Forms Control Libraries, which are collections of custom controls; and Class Libraries, which are
collections of classes. These are the project types we’ll cover in depth in this book.

If you have installed Visual Basic 2008 Express Edition, you will see fewer project types in the
New Project dialog box, but the projects discussed in this book are included.

Notice the Create Directory For Solution check box in the dialog box of Figure 1.2. By default,
Visual Studio creates a new folder for the project under the folder you have specified in the Loca-
tion box. If you want to put together a short application to test a feature of the language, or perform
some trivial task, you may not wish to save the project. In this case, just clear the check box to skip
the creation of a new project folder.

You can always save a project at any time by choosing the Save All command from the File
menu. You’ll be prompted at that point about the project’s folder, and Visual Studio will save
the project under the folder you specified. If you decide to discard the project, you can create
a new project or close Visual Studio. Visual Studio will prompt you about an open project that
hasn’t been saved yet, and you can choose not to save it.

You may discover at some point that you have created too many projects, which you don’t
really need. You can remove these projects from your system by deleting the corresponding
folders — no special action is required. You’ll know it’s time to remove the unneeded project
folder when Visual Studio suggests project names such as WindowsApplication9 or Windows-
Application49.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 4

4 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.2

The New Project dialog
box

For our project, select the Windows Forms Application template; Visual Studio suggests
the name WindowsApplication1 as the project name. Change it to MyTestApplication, select the
Create Directory For Solution check box, and then click the OK button to create the new project.

What you see now is the Visual Studio IDE displaying the Form Designer for a new project, as
shown in Figure 1.3. The main window of your copy of Visual Studio may be slightly different,
but don’t worry about it. I’ll go through all the components you need to access in the process of
designing, coding, and testing a Windows application.

Figure 1.3

The integrated develop-
ment environment of
Visual Studio 2008 for a
new project

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 5

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 5

The new project contains a form already: the Form1 component in the Solution Explorer. The
main window of the IDE is the Form Designer, and the gray surface on it is the window of your
new application in design mode. Using the Form Designer, you’ll be able to design the visible
interface of the application (place various components of the Windows interface on the form and
set their properties) and then program the application.

The default environment is rather crowded, so let’s hide a few of the toolbars that we won’t use
in the projects of the first few chapters. You can always show any of the toolbars at any time. Open
the View menu and choose Toolbars. You’ll see a submenu with 28 commands that are toggles.
Each command corresponds to a toolbar, and you can turn the corresponding toolbar on or off by
clicking one of the commands in the Toolbars submenu. For now, turn off all the toolbars except
for the Layout and Standard toolbars. These are the toolbars shown by default and you shouldn’t
hide them; if you do, this is the place to make them visible again.

The last item in the Toolbars submenu is the Customize command, which leads to a dialog box
in which you can specify which of the toolbars and which of the commands you want to see. After
you have established a work pattern, use this menu to customize the environment for the way you
want to work with Visual Studio. You can hide just about any component of the IDE, except for
the main menu — after all, you have to be able to undo the changes!

Using the Windows Form Designer
To design the form, you must place on it all the controls you want to display to the user at runtime.
The controls are the components of the Windows interface (buttons, text boxes, radio buttons,
lists, and so on). Open the Toolbox by moving the pointer over the Toolbox tab at the far left; the
Toolbox, shown in Figure 1.4, pulls out. This Toolbox contains an icon for each control you can
use on your form.

The controls are organized into groups according to each control’s function on the interface.
In the first part of the book, we’ll create simple Windows applications and we’ll use the controls
on the Common Controls tab. When you develop web applications, you will see a different set of
icons in the Toolbox.

To place a control on the form, you can double-click the icon of the control. A new instance
with a default size will be placed on the form. Then you can position and resize it with the mouse.
Or you can select the control from the Toolbox with the mouse and then click and drag the
mouse over the form and draw the outline of the control. A new instance of the control will be
placed on the form, and it will fill the rectangle you specified with the mouse. Start by placing a
TextBox control on the form.

The control’s properties will be displayed in the Properties window (see Figure 1.5). This win-
dow, at the far right edge of the IDE and below the Solution Explorer, displays the properties of
the selected control on the form. If the Properties window is not visible, open the View menu and
choose Properties Window, or press F4. If no control is selected, the properties of the selected item
in the Solution Explorer are displayed.

In the Properties window, also known as the Properties Browser, you see the properties that
determine the appearance of the control and (in some cases) its function. The properties are
organized in categories according to their role. The properties that determine the appearance
of the control are listed alphabetically under the header Appearance, the properties that determine
the control’s behavior are listed alphabetically under the header Behavior, and so on. You can
click the AZ button on the window’s title bar to display all properties in alphabetical order.
After you familiarize yourself with the basic properties, you will most likely switch to the
alphabetical list.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 6

6 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.4

Windows Forms Toolbox
of the Visual Studio IDE

Rearranging the IDE Windows

As soon as you place a control on the form, the Toolbox retracts to the left edge of the Designer. You
can fix this window on the screen by clicking the icon with the pin on the Toolbox’s toolbar. (It’s the
icon next to the Close icon at the upper-right corner of the Toolbox window, and it appears only when
the Toolbox window is docked, but not while it’s floating.)

You can easily rearrange the various windows that make up the IDE by moving them around with the
mouse. Move the pointer to a window’s title bar, press the left mouse button, and drag the window
around. A window may not follow the mouse, because its position is locked. In this case, click the pin
icon in the upper-right corner of the window to unlock the window’s position and then move it
around with the mouse.

As you move the window, eight semitransparent buttons with arrows appear on the screen, indicat-
ing the area where the window can be docked. Keep moving the window until the pointer hovers over

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 7

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 7

one of these buttons, and the docking area appears in semitransparent blue color. Find the desired
docking location for the window and release the mouse. If you release the mouse while the pointer
is not on top of an arrow, the window is not docked. Instead, it remains at the current location as a
floating window, and you can move it around at will with your mouse.

Most developers would rather work with docked windows, and the default positions of the IDE win-
dows are quite convenient. If you want to open even more windows and arrange them differently on
the screen, use the docking feature of the IDE to dock the additional windows.

Locate the TextBox control’s Text property and set it to My TextBox Control by entering the
string into the box next to the property name. The control’s Text property is the string that appears
in the control (the control’s caption), and most controls have a Text property.

Next locate its BackColor property and select it with the mouse. A button with an arrow
appears next to the current setting of the property. Click this button, and you’ll see a dialog box
with three tabs (Custom, Web, and System), as shown in Figure 1.6. In this dialog box, you can
select the color that will fill the control’s background. Set the control’s background color to yellow
and notice that the control’s appearance changes on the form.

One of the settings you’ll want to change is the font of the various controls. While the TextBox
control is still selected on the form, locate the control’s Font property in the Properties window.
You can click the plus sign in front of the property name and set the individual properties of
the font, or you can click the ellipsis button to invoke the Font dialog box. Here you can set the
control’s font and its attributes and then click OK to close the dialog box. Set the TextBox control’s
Font property to Verdana, 14 points, bold. As soon as you close the Font dialog box, the control
on the form is adjusted to the new setting.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 8

8 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.5

Properties of a TextBox
control

Figure 1.6

Setting a color prop-
erty in the Properties
window

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 9

EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 9

There’s a good chance that the string you assigned to the control’s Text property won’t fit in the
control’s width when rendered in the new font. Select the control on the form with the mouse, and
you will see eight handles along its perimeter. Rest the pointer over any of these handles, and it
will assume a shape indicating the direction in which you can resize the control. Make the control
long enough to fit the entire string. If you have to, resize the form as well. Click somewhere on the
form, and when the handles along its perimeter appear, resize it with the mouse.

Some controls, such as the Label, Button, and CheckBox controls, support the AutoSize prop-
erty, which determines whether the control is resized automatically to accommodate its caption.
The TextBox control, as well as many others, doesn’t support the AutoSize property. If you
attempt to make the control tall enough to accommodate a few lines of text, you’ll realize that
you can’t change the control’s height. By default, the TextBox control accepts a single line of text,
and you must set its MultiLine property to True to resize the TextBox control vertically.

The Font Is a Design Element

Like documents, forms should be designed carefully and follow the rules of a printed page design. At
the very least, you shouldn’t use multiple fonts on your forms, just as you shouldn’t mix different
fonts on a printed page. You could use two font families on rare occasions, but you shouldn’t overload
your form. You also shouldn’t use the bold style in excess.

To avoid adjusting the Font property of multiple controls on the form, you should set the form’s font
first, because each control you place on a form inherits the form’s font. If you change the form’s font,
the controls will be adjusted accordingly, but this may throw off the alignment of the controls on the
form. You should experiment with a few Label controls, select a font that you like that’s appropriate
for your interface (you shouldn’t use a handwritten style with a business application, for example)
and then set the form’s Font property to the desired font. Every time you add a new form to the appli-
cation, you should start by setting its Font property to the same font, so that the entire application
will have a consistent look.

The font is the most basic design element, whether you’re designing forms or a document. Various
components of the form may have a different font size, even a different style (like bold or italics),
but there must be a dominant font family that determines the look of the form. The Verdana fam-
ily was designed for viewing documents on computer monitors and is a popular choice. Another great
choice is Segoe UI, a new font family introduced with Windows Vista. The Segoe Print font has a
distinguished handwritten style, and you can use it with graphics applications.

The second most important design element is color, but you shouldn’t get too creative with colors
unless you’re a designer. I recommend that you stay with the default colors and use similar shades
to differentiate a few elements of the interface.

The design of a modern interface has become a new discipline in application development, and there
are tools for designing interfaces. One of them is Microsoft’s Expression Studio, which enables design-
ers to design the interface and developers to write code, without breaking each other’s work. You can
download a trial version of Expression Studio from www.microsoft.com/expression.

So far, you’ve manipulated properties that determine the appearance of the control. Now you’ll
change a property that determines not only the appearance, but also the function of the control.
Locate the Multiline property. Its current setting is False. Expand the list of available settings

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 10

10 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

and change it to True. (You can also change it by double-clicking the name of the property. This
action toggles the True/False settings.) Switch to the form, select the TextBox control, and make it
as tall as you wish.

The Multiline property determines whether the TextBox control can accept one (if Multiline
= False) or more (if Multiline = True) lines of text. Set this property to True, go back to the Text
property, set it to a long string, and press Enter. The control breaks the long text into multiple lines.
If you resize the control, the lines will change, but the entire string will fit in the control because the
control’s WordWrap property is True. Set it to False to see how the string will be rendered on
the control.

Multiline TextBox controls usually have a vertical scroll bar so users can quickly locate the
section of text that they’re interested in. Locate the control’s ScrollBars property and expand
the list of possible settings by clicking the button with the arrow. This property’s settings are
None, Vertical, Horizontal, and Both. Set it to Vertical, assign a very long string to its Text
property, and watch how the control handles the text. At design time, you can’t scroll the text on
the control; if you attempt to move the scroll bar, the entire control will be scrolled. The scroll bar
will work as expected at runtime (it will scroll the text vertically).

You can also make the control fill the entire form. Start by deleting all other controls you may
have placed on the form and then select the multiline TextBox. Locate the Dock property in the
Properties window and keep double-clicking the name of the property until its setting changes
to Fill. (You’ll learn a lot more about docking controls in Chapter 7, ‘‘Working with Forms.’’)
The TextBox control fills the form and is resized as you resize the form, both at design time and
runtime.

To examine the control’s behavior at runtime, press F5. The application will be compiled, and
a few moments later, a window filled with a TextBox control will appear on the Desktop (like the
one shown in Figure 1.7). This is what the users of your application would see (if this were an
application worth distributing, of course).

Figure 1.7

A TextBox control
displaying multiple
text lines

Enter some text on the control, select part of the text, and copy it to the Clipboard by pressing
Ctrl+C. You can also copy text from any other Windows application and paste it on the TextBox
control. Right-click the text on the control and you will see the same context menu you get with

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 11

CREATING YOUR FIRST VB APPLICATION 11

Notepad; you can even change the reading order of the text — not that you’d want to do that with
a Western language. When you’re finished, open the Debug menu and choose Stop Debugging.
This will terminate your application’s execution, and you’ll be returned to the IDE. The Stop
Debugging command is also available as a button with a blue square icon on the toolbar. Finally,
you can stop the running application by clicking the Close button in the application’s window.

The design of a new application starts with the design of the application’s form, which is the
application’s user interface, or UI. The design of the form determines to a large extent the func-
tionality of the application. In effect, the controls on the form determine how the application will
interact with the user. The form itself is a prototype, and you can demonstrate it to a customer
before even adding a single line of code. By placing controls on the form and setting their proper-
ties, you’re implementing a lot of functionality before coding the application. The TextBox control
with the settings discussed in this section is a functional text editor.

Creating Your First VB Application
In this section, we’ll develop a simple application to demonstrate not only the design of the inter-
face, but also the code behind the interface. We’ll build an application that allows the user to enter
the name of his favorite programming language, and the application will evaluate the choice.
Objectively, VB is a step ahead of all other languages, and it will receive the best evaluation. All
other languages get the same grade — good — but not VB.

The project is called WindowsApplication1. You can download the project from the book’s
website and examine it, but I suggest you follow the steps outlined in this section to build the
project from scratch. Start a new project and use the default name, WindowsApplication1, and
place a TextBox and a Button control on the form. Use the mouse to position and resize the controls
on the form, as shown in Figure 1.8.

Figure 1.8

A simple applica-
tion that processes a
user-supplied string

Start by setting the form’s Font property to Segoe UI, 9 pt. Arrange and size the controls as
shown in Figure 1.8. Then place a Label control on the form and set its Text property to Enter
your favorite programming language. The Label will be resized according to its caption, because

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 12

12 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

the control’s AutoSize property is True. As you move the controls around on the form, you’ll see
some blue lines connecting the edges of the controls when they’re aligned. These lines are called
snap lines, and they allow you to align controls on the form.

Now you must insert some code to evaluate the user’s favorite language. Windows applications
are made up of small code segments, called event handlers, which react to specific actions such as
the click of a button, the selection of a menu command, the click of a check box, and so on. In the
case of our example, we want to program the action of clicking the button. When the user clicks
the button, we want to execute some code that will display a message.

To insert some code behind the Button control, double-click the control. You’ll see the code
window of the application, which is shown in Figure 1.9. You will see only the definition of
the procedure, not the code that is shown between the two statements in the figure. The line
Private . . . is too long to fit on the printed page, so I inserted a line continuation character (an
underscore) to break it into two lines. When a line is too long, you can break it into two (or more)
lines by inserting this character. Alternatively, you can turn on the WordWrap feature of the editor
(you’ll see shortly how to adjust the editor’s properties). Notice that I also inserted quite a bit of
space before the second half of the first code line. It’s customary to indent continued lines so they
can be easily distinguished from the other lines. If you enter the line continuation character in the
editor, the following line will be indented automatically.

Figure 1.9

Outline of a subrou-
tine that handles the
Click event of a Button
control

The editor opens a subroutine, which is delimited by the following statements:

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

At the top of the main pane of the Designer, you will see two tabs named after the form: the
Form1.vb [Design] tab and the Form1.vb tab. The first tab is the Windows Form Designer (in
which you build the interface of the application with visual tools), and the second is the code
editor (in which you insert the code behind the interface). At the top of the code editor, which is
what you see in Figure 1.9, are two ComboBoxes. The one on the left contains the names of the
controls on the form. The one on the right contains the names of events each control recognizes.
When you select a control (or an object, in general) in the left list, the other list’s contents are
adjusted accordingly. To program a specific event of a specific control, select the name of the

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 13

CREATING YOUR FIRST VB APPLICATION 13

control in the left list (the Objects list) and the name of the event in the right list (the Events list).
While Button1 is selected in the Objects list, open the Events list to see the events to which the
button can react.

The Click event happens to be the default event of the Button control, so when you double-click
a Button on the form, you’re taken to the Button1 Click subroutine. This subroutine is an event
handler, which is invoked automatically every time an event takes place. The event of interest in
our example is the Click event of the Button1 control. Every time the Button1 control on the form
is clicked, the Button1 Click subroutine is activated. To react to the Click event of the button,
you must insert the appropriate code in this subroutine.

There are more than two dozen events for the Button control, and it is among the simpler
controls (after all, what can you do to a button besides clicking it?). Most of the controls recognize
a very large number of events.

The definition of the event handler can’t be modified; this is the event handler’s signature (the
arguments it passes to the application). All event handlers in VB 2008 pass two arguments to
the application: the sender argument, which is an object that represents the control that fired the
event, and the e argument, which provides additional information about the event.

The name of the subroutine is made up of the name of the control, followed by an underscore
and the name of the event. This is just the default name, and you can change it to anything you like
(such as EvaluateLanguage, for this example, or StartCalculations). What makes this subrou-
tine an event handler is the keyword Handles at the end of the statement. The Handles keyword
tells the compiler which event this subroutine is supposed to handle. Button1.Click is the Click
event of the Button1 control. If there were another button on the form, the Button2 control, you’d
have to write code for a subroutine that would handle the Button2.Click event. Each control
recognizes many events, and you can provide a different event handler for each control and event
combination. Of course, we never program every possible event for every control.

The controls have a default behavior and handle the basic events on their own. The TextBox
control knows how to handle keystrokes. The CheckBox control (a small square with a check
mark) changes state by hiding or displaying the check mark every time it’s clicked. The ScrollBar
control moves its indicator (the button in the middle of the control) every time you click one of the
arrows at the two ends. Because of this default behavior of the controls, you need not supply any
code for the events of most controls on the form.

If you change the name of the control after you have inserted some code in an event handler, the
name of the event handled by the subroutine will be automatically changed. The name of the sub-
routine, however, won’t change. If you change the name of the Button1 control to bttnEvaluate,
the subroutine’s header will become

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnEvaluate.Click

End Sub

Rename the Button1 Click subroutine to EvaluateLanguage. You must edit the code to
change the name of the event handler. I try to name the controls before adding any code to the
application, so that their event handlers will be named correctly. Alternatively, you can use your
own name for each event handler. The default names of the controls you place on a form are quite
generic, and you should change them to something more meaningful. I usually prefix the con-
trol names with a few characters that indicate the control’s type (such as txt, lbl, bttn, and so
on), followed by a meaningful name. Names such as txtLanguage and bttnEvaluate make your

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 14

14 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

code far more readable. It’s a good practice to change the default names of the controls as soon
as you add the controls to the form. Names such as Button1, Button2, Button3, and so on, don’t
promote the readability of your code. With the exception of this first sample project, I’m using
more-meaningful names for the controls used in this book’s projects.

Let’s add some code to the Click event handler of the Button1 control. When this button is
clicked, we want to examine the text in the text box. If it’s Visual Basic, we display a message; if
not, we display a different message. Insert the lines of Listing 1.1 between the Private Sub and
End Sub statements. (I’m showing the entire listing here; there’s no reason to retype the first and
last statements.)

Listing 1.1: Processing a User-Supplied String

Private Sub EvaluateLanguage(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text
If language = ”Visual Basic” Then

MsgBox(”We have a winner!”)
Else

MsgBox(language & ”is not a bad language.”)
End If

End Sub

Here’s what this code does. First, it assigns the text of the TextBox control to the variable lan-
guage. A variable is a named location in memory where a value is stored. Variables are where we
store the intermediate results of our calculations when we write code. All variables are declared
with a Dim statement and have a name and a type.

You could also declare and assign a value to the language variable in a single step:

Dim language = TextBox1.Text

The compiler will create a String variable, because the statement assigns a string to the variable.
We’ll come back to the topic of declaring and initializing variables in Chapter 2, ‘‘Variables and
Data Types.’’

Then the program compares the value of the language variable to the literal Visual Basic, and
depending on the outcome of the comparison, it displays one of two messages. The MsgBox()
function displays the specified message in a small window with the OK button, as shown in
Figure 1.8. Users can view the message and then click the OK button to close the message box.

Even if you’re not familiar with the syntax of the language, you should be able to understand
what this code does. Visual Basic is the simplest of the languages supported by Visual Studio 2008,
and we will discuss the various aspects of the language in detail in the following chapters. In the
meantime, you should try to understand the process of developing a Windows application: how
to build the visible interface of the application and how to program the events to which you want
your application to react.

The code of our first application isn’t very robust. If the user doesn’t enter the string with the
exact spelling shown in the listing, the comparison will fail. We can convert the string to uppercase

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 15

CREATING YOUR FIRST VB APPLICATION 15

and then compare it with VISUAL BASIC to eliminate differences in case. To convert a string to
uppercase, use the ToUpper method of the String class. The following expression returns the string
stored in the language variable, converted to uppercase:

language.ToUpper

We should also take into consideration the fact that the user may enter VB or VB 2008, and so
on. In the following section, we’ll further improve our application. You never know what users
may throw at your application, so whenever possible you should try to limit their responses to the
number of available choices. In our case, we can display the names of certain languages (the ones
we’re interested in) and force the user to select one of them.

One way to display a limited number of choices is to use a ComboBox control. In the following
section, we’ll revise our sample application so that users won’t have to enter the name of the
language. We’ll force them to select their favorite language from a list so that we won’t have to
validate the string supplied by the user.

Making the Application More User-Friendly
Start a new project: the WindowsApplication2 project. Do not select the Create Directory For Solu-
tion check box; we’ll save the project from within the IDE. As soon as the project is created, open
the File menu and choose Save All to save the project. When the Save Project dialog box appears,
click the Browse button to select the folder where the project will be saved. In the Project Location
dialog box that appears, select an existing folder or create a new folder such as MyProjects or
VB.NET Samples.

Open the Toolbox and double-click the icon of the ComboBox tool. A ComboBox control will
be placed on your form. Now place a Button control on the form and position it so that your
form looks like the one shown in Figure 1.10. Then set the button’s Text property to Evaluate
My Choice.

Figure 1.10

Displaying options in a
ComboBox control

We must now populate the ComboBox control with the valid choices. Select the ComboBox
control on the form by clicking it with the mouse and locate its Items property in the Properties
window. The setting of this property is Collection, which means that the Items property doesn’t
have a single value; it’s a collection of items (strings, in this case). Click the ellipsis button and
you’ll see the String Collection Editor dialog box, as shown in Figure 1.11.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 16

16 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.11

Click the ellipsis button
next to the Items prop-
erty of a ComboBox to
see the String Collection
Editor dialog box.

The main pane in the String Collection Editor dialog box is a TextBox, in which you can enter
the items you want to appear in the ComboBox control at runtime. Enter the following strings, one
per row and in the order shown here:

C++
C#

Visual Basic

Java

Cobol

Click the OK button to close the dialog box. The items will not appear on the control at design
time, but you will see them when you run the project. Before running the project, set one more
property. Locate the ComboBox control’s Text property and set it to Select your favorite pro-
gramming language. This is not an item of the list; it’s the string that will initially appear on the
control.

You can run the project now and see how the ComboBox control behaves. Press F5 and wait
a few seconds. The project will be compiled, and you’ll see its form on your Desktop, on top of
the Visual Studio window. I’m sure you know how the ComboBox control behaves in a typical
Windows application, and our sample application is no exception. You can select an item on the
control, either with the mouse or with the keyboard. Click the button with the arrow to expand the
list and then select an item with the mouse. Or press the down or up arrow keys to scroll through
the list of items. The control isn’t expanded, but each time you click an arrow button, the next or
previous item in the list appears on the control. Press the Tab key to move the focus to the Button
control and press the spacebar to emulate a Click event (or simply click the Button control).

We haven’t told the application what to do when the button is clicked, so let’s go back and
add some code to the project. Stop the application by clicking the Stop button on the toolbar (the
solid black square) or by choosing Debug� Stop Debugging from the main menu. When the form
appears in design mode, double-click the button, and the code window will open, displaying an
empty Click event handler. Insert the statements shown in Listing 1.2 between the Private Sub
and End Sub statements.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 17

CREATING YOUR FIRST VB APPLICATION 17

Listing 1.2: The Revised Click Event Handler

Private Sub Button1 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = ComboBox1.Text
If language = ”Visual Basic” Then

MsgBox(”We have a winner!”)
Else

MsgBox(language & ”is not a bad language.”)
End If

End Sub

When the form is first displayed, a string that doesn’t correspond to a language is displayed
in the ComboBox control. We can preselect one of the items from within our code when the form
is first loaded. When a form is loaded, the Load event of the Form object is raised. Double-click
somewhere on the form and the editor will open the form’s Load event handler:

Private Sub Form1 Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Enter the following code to select the item Visual Basic when the form is loaded:

Private Sub Form1 Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox1.SelectedIndex = 2
End Sub

SelectedIndex is a property of the ComboBox control that determines the selected item. You
can set it to an integer value from within your code to select an item on the control, and you can
also use it to retrieve the index of the selected item in the list. Instead of comparing strings, we
can compare the SelectedIndex property to the value that corresponds to the index of the item
Visual Basic, with a statement such as the following:

If ComboBox1.SelectedIndex = 2 Then
MsgBox(”We have a winner!”)

Else
MsgBox(ComboBox1.Text & ”is not a bad language.”)

End If

The Text property of the ComboBox control returns the text on the control, and we use it to
print the selected language’s name. Of course, if you insert or remove items from the list, you
must edit the code accordingly. If you run the application and test it thoroughly, you’ll realize

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 18

18 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

that there’s a problem with the ComboBox control. Users can type a new string in the control,
which will be interpreted as a language. By default, the ComboBox control allows users to type in
something, in addition to selecting an item from the list. To change the control’s behavior, select
it on the form and locate its DisplayStyle property in the Properties window. Expand the list of
possible settings for the control and change the property’s value from DropDown to DropDown-
List. Run the application again and test it; our sample application has become bulletproof. It’s a
simple application, but you’ll see more techniques for building robust applications in Chapter 4,
‘‘GUI Design and Event-Driven Programming.’’

The controls on the Toolbox are more than nice pictures we place on our forms. They encapsu-
late a lot of functionality and expose properties that allow us to adjust their appearance and their
functionality. Most properties are usually set at design time, but quite frequently we change the
properties of various controls from within our code.

Now that you’re somewhat familiar with the process of building Windows applications, and
before you look into any additional examples, I will quickly present the components of the Visual
Studio IDE.

Understanding the IDE Components
The IDE of Visual Studio 2008 contains numerous components, and it will take you a while to
explore them. It’s practically impossible to explain in a single chapter what each tool, window, and
menu command does. We’ll discuss specific tools as we go along and as the topics get more
and more advanced. In this section, I will go through the basic items of the IDE — the ones we’ll
use in the following few chapters to build simple Windows applications.

The IDE Menu
The IDE menu provides the following commands, which lead to submenus. Notice that most
menus can also be displayed as toolbars. Also, not all options are available at all times. The options
that cannot possibly apply to the current state of the IDE are either invisible or disabled. The Edit
menu is a typical example. It’s quite short when you’re designing the form and quite lengthy when
you edit code. The Data menu disappears altogether when you switch to the code editor — you
can’t use the options of this menu while editing code. If you open an XML document in the IDE,
the XML command will be added to the main menu of Visual Studio.

File Menu

The File menu contains commands for opening and saving projects or project items, as well as
commands for adding new or existing items to the current project. For the time being, use the
New � Project command to create a new project, Open � Project/Solution to open an existing
project or solution, Save All to save all components of the current project, and the Recent Projects
submenu to open one of the recent projects.

Edit Menu

The Edit menu contains the usual editing commands. Among these commands are the Advanced
command and the IntelliSense command. Both commands lead to submenus, which are discussed
next. Note that these two items are visible only when you’re editing your code, and are invisible
while you’re designing a form.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 19

UNDERSTANDING THE IDE COMPONENTS 19

Edit � Advanced Submenu

The more-interesting options of the Edit � Advanced submenu are the following:

View White Space Space characters (necessary to indent lines of code and make it easy to
read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, the line is
automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your
code’s statements to document your application. Every line that begins with a single quote
is a comment; it is part of the code, but the compiler ignores it. Sometimes, we want to dis-
able a few lines from our code but not delete them (because we want to be able to restore
them later). A simple technique to disable a line of code is to comment it out (insert the com-
ment symbol in front of the line). This command allows you to comment (or uncomment)
large segments of code in a single move.

Edit � IntelliSense Submenu

The Edit � IntelliSense menu item leads to a submenu with five options, which are described
next. IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as
much information as possible, whenever possible. When you type the name of a control and the
following period, IntelliSense displays a list of the control’s properties and methods, so that you
can select the desired one, rather than guessing its name. When you type the name of a function
and the opening parenthesis, IntelliSense will display the syntax of the function — its arguments.
The IntelliSense submenu includes the following options:

List Members When this option is on, the editor lists all the members (properties, methods,
events, and argument list) in a drop-down list. This list will appear when you enter the name of
an object or control followed by a period. Then you can select the desired member from the list
with the mouse or with the keyboard. Let’s say your form contains a control named TextBox1
and you’re writing code for this form. When you enter the name of the control followed by
a period (TextBox1.), a list with the members of the TextBox control will appear (as seen in
Figure 1.12).

In addition, a description of the selected member is displayed in a ToolTip box, as you can
see in the same figure. Select the Text property and then enter the equal sign, followed by a
string in quotes, as follows:

TextBox1.Text = ”Your User Name”

If you select a property that can accept a limited number of settings, you will see the names
of the appropriate constants in a drop-down list. If you enter the following statement, you will
see the constants you can assign to the property (see Figure 1.13):

TextBox1.TextAlign =

Again, you can select the desired value with the mouse. The drop-down list with the members
of a control or object (the Members list) remains open until you type a terminator key (the Esc
or End key) or select a member by pressing the space bar or the Enter key.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 20

20 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Figure 1.12

Viewing the members
of a control in the
IntelliSense
drop-down list

Figure 1.13

Viewing the possible
settings of a prop-
erty in the IntelliSense
drop-down list

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 21

UNDERSTANDING THE IDE COMPONENTS 21

Parameter Info While editing code, you can move the pointer over a variable, method, or
property and see its declaration in a yellow pop-up box. You can also jump to the variable’s
definition or the body of a procedure by choosing Go To Definition from the context menu that
will appear if you right-click the variable or method name in the code window.

Quick Info This is another IntelliSense feature that displays information about commands
and functions. When you type the opening parenthesis following the name of a function, for
example, the function’s arguments will be displayed in a ToolTip box (a yellow horizontal box).
The first argument appears in bold font; after entering a value for this argument, the next one is
shown in bold. If an argument accepts a fixed number of settings, these values will appear in a
drop-down list, as explained previously.

Complete Word The Complete Word feature enables you to complete the current word by
pressing Ctrl+spacebar. For example, if you type TextB and then press Ctrl+spacebar, you
will see a list of words that you’re most likely to type (TextBox, TextBox1, and so on).

Insert Snippet This command opens the Insert Snippet window at the current location in the
code editor window. Code snippets, which are an interesting feature of Visual Studio 2008, are
discussed in the section ‘‘Using Code Snippets’’ later in this chapter.

Edit � Outlining Submenu

A practical application contains a substantial amount of code in a large number of event han-
dlers and custom procedures (subroutines and functions). To simplify the management of the
code window, the Outlining submenu contains commands that collapse and expand the various
procedures.

Let’s say you’re finished editing the Click event handlers of several buttons on the form. You
can reduce these event handlers to a single line that shows the names of the procedures and a
plus sign in front of them. You can expand a procedure’s listing at any time by clicking the plus
sign in front of its name. When you do so, a minus sign appears in front of the procedure’s name,
and you can click it to collapse the body of the procedure again. The Outlining submenu contains
commands to handle the outlining of the various procedures, or turn off outlining and view the
complete listings of all procedures. You will use these commands as you write applications with
substantial amounts of code:

Toggle Outlining Expansion This option lets you change the outline mode of the current
procedure. If the procedure’s definition is collapsed, the code is expanded, and vice versa.

Toggle All Outlining This option is similar to the Toggle Outlining Expansion option, but
it toggles the outline mode of the current document. A form is reduced to a single statement.
A file with multiple classes is reduced to one line per class.

Stop Outlining This option turns off outlining and adds a new command to the
Outlining submenu, Start Automatic Outlining, which you can select to turn on automatic
outlining again.

Collapse To Definitions This option reduces the listing to a list of procedure headers.

View Menu

This menu contains commands to display any toolbar or window of the IDE. You have already
seen the Toolbars menu (in the ‘‘Starting a New Project’’ section). The Other Windows command
leads to a submenu with the names of some standard windows, including the Output and Com-
mand windows. The Output window is the console of the application. The compiler’s messages,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 22

22 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

for example, are displayed in the Output window. The Command window allows you to enter
and execute statements. When you debug an application, you can stop it and enter VB statements
in the Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a file,
a component, or even another project). The last option in this menu is the Project Properties com-
mand, which opens the project’s Properties Pages. The Add Reference and Add Web Reference
commands allow you to add references to .NET components and web components, respectively.

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic com-
mands in this menu are Build and Rebuild All. The Build command compiles (builds the exe-
cutable) of the entire solution, but it doesn’t compile any components of the project that haven’t
changed since the last build. The Rebuild All command does the same, but it clears any existing
files and builds the solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging tools.
The basic commands of this menu are discussed briefly in Chapter 4 and in Appendix B.

Data Menu

This menu contains commands you will use with projects that access data. You’ll see how to
use this short menu’s commands in the discussion of the visual database tools in Chapters 21 and
22 of the book.

Format Menu

The Format menu, which is visible only while you design a Windows or web form, contains
commands for aligning the controls on the form. The commands of this menu are discussed in
Chapter 4. The Format menu is invisible when you work in the code editor — its commands apply
to the visible elements of the interface.

Tools Menu

This menu contains a list of useful tools, such as the Macros command, which leads to a submenu
with commands for creating macros. Just as you can create macros in a Microsoft Office applica-
tion to simplify many tasks, you can create macros to automate many of the repetitive tasks you
perform in the IDE. The last command in this menu, the Options command, leads to the Options
dialog box, in which you can fully customize the environment. The Choose Toolbox Items com-
mand opens a dialog box that enables you to add more controls to the Toolbox. In Chapter 12,
‘‘Building Custom Windows Controls,’’ you’ll learn how to design custom controls and add them
to the Toolbox.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of open
windows, it also contains the Hide command, which hides all toolboxes, leaving the entire

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 23

UNDERSTANDING THE IDE COMPONENTS 23

window of the IDE devoted to the code editor or the Form Designer. The toolboxes don’t dis-
appear completely; they’re all retracted, and you can see their tabs on the left and right edges of
the IDE window. To expand a toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic
Help window, which is populated with topics that apply to the current operation. The Index
command opens the Index window, in which you can enter a topic and get help on the specific
topic.

Toolbox Window
The Toolbox window contains all the controls you can use to build your application’s interface.
This window is usually retracted, and you must move the pointer over it to view the Toolbox. The
controls in the Toolbox are organized in various tabs, so take a look at them to become familiar
with the controls and their functions.

In the first few chapters, we’ll work with the controls in the Common Controls and Menus &
Toolbars tabs. The Common Controls tab contains the icons of the most common Windows con-
trols. The Data tab contains the icons of the objects you will use to build data-driven applications
(they’re explored later in this book). The Dialogs tab contains controls for implementing the com-
mon dialog controls, which are so common in Windows interfaces; they’re discussed in Chapter 8,
‘‘More Windows Controls.’’

Solution Explorer Window
The Solution Explorer window contains a list of the items in the current solution. A solution can
contain multiple projects, and each project can contain multiple items. The Solution Explorer
displays a hierarchical list of all the components, organized by project. You can right-click any
component of the project and choose Properties in the context menu to see the selected com-
ponent’s properties in the Properties window. If you select a project, you will see the Project
Properties dialog box. You will find more information on project properties in the following
chapter.

If the solution contains multiple projects, you can right-click the project you want to become
the startup form and select Set As StartUp Project. You can also add items to a project with the
Add Item command of the context menu, or remove a component from the project with the
Exclude From Project command. This command removes the selected component from the project,
but doesn’t affect the component’s file on the disk. The Delete command removes the selected
component from the project and also deletes the component’s file from the disk.

Properties Window
This window (also known as the Properties Browser) displays all the properties of the selected
component and its settings. Every time you place a control on a form, you switch to this window
to adjust the appearance of the control. You have already seen how to manipulate the properties
of a control through the Properties window.

Many properties are set to a single value, such as a number or a string. If the possible settings
of a property are relatively few, they’re displayed as meaningful constants in a drop-down list.
Other properties are set through a more elaborate interface. Color properties, for example, are set
from within a Color dialog box that’s displayed right in the Properties window. Font properties
are set through the usual Font dialog box. Collections are set in a Collection Editor dialog box,

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 24

24 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

in which you can enter one string for each item of the collection, as you did for the items of the
ComboBox control earlier in this chapter.

If the Properties window is hidden, or if you have closed it, you can either choose View �
Properties Window, or right-click a control on the form and choose Properties. Or you can simply
press F4 to bring up this window. There will be times when a control might totally overlap another
control, and you won’t be able to select the hidden control and view its properties. In this case,
you can select the desired control in the ComboBox at the top of the Properties window. This box
contains the names of all the controls on the form, and you can select a control on the form by
selecting its name on this box.

Output Window
The Output window is where many of the tools, including the compiler, send their output. Every
time you start an application, a series of messages is displayed in the Output window. These
messages are generated by the compiler, and you need not understand them at this point. If the
Output window is not visible, choose View � Other Windows � Output from the menu.

Command and Immediate Windows
While testing a program, you can interrupt its execution by inserting a so-called breakpoint. When
the breakpoint is reached, the program’s execution is suspended, and you can execute a statement
in the Immediate window. Any statement that can appear in your VB code can also be executed in
the Immediate window. To evaluate an expression, enter a question mark followed by the expres-
sion you want to evaluate, as in the following samples, where result is a variable in the program
you interrupted:

? Math.Log(35)
? ”The answer is ” & result.ToString

You can also send output to this window from within your code with the Debug.Write and
Debug.WriteLine methods. Actually, this is a widely used debugging technique — to print the
values of certain variables before entering a problematic area of the code. There are more elaborate
tools to help you debug your application, and you’ll find a discussion in Appendix B, but printing
a few values to the Immediate window is a time-honored practice in programming with VB.

In many of the examples of this book, especially in the first few chapters, I use the Debug.
WriteLine statement to print something to the Immediate window. To demonstrate the use of the
DateDiff() function, for example, I’ll use a statement like the following:

Debug.WriteLine(DateDiff(DateInterval.Day, #3/9/2007#, #5/15/2008#))

When this statement is executed, the value 433 will appear in the Immediate window. This
statement demonstrates the syntax of the DateDiff() function, which returns the difference
between the two dates in days. Sending some output to the Immediate window to test a function
or display the results of intermediate calculations is a common practice.

To get an idea of the functionality of the Immediate window, switch back to your first sample
application and insert the Stop statement after the End If statement in the button’s Click event
handler. Run the application, select a language, and click the button on the form. After displaying
a message box, the application will reach the Stop statement and its execution will be suspended.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 25

SETTING ENVIRONMENT OPTIONS 25

You’ll see the Immediate window at the bottom of the IDE. If it’s not visible, open the Debug menu
and choose Windows � Immediate. In the Immediate window, enter the following statement:

? ComboBox1.Items.Count

Then press Enter to execute it. Notice that IntelliSense is present while you’re typing in the Imme-
diate window. The expression prints the number of items in the ComboBox control. (Don’t worry
about the numerous properties of the control and the way I present them here; they’re discussed
in detail in Chapter 6, ‘‘Basic Windows Controls.’’) As soon as you press Enter, the value 5 will be
printed on the following line.

You can also manipulate the controls on the form from within the Immediate window. Enter
the following statement and press Enter to execute it:

ComboBox1.SelectedIndex = 4

The fifth item on the control will be selected (the indexing of the items begins with 0). How-
ever, you can’t see the effects of your changes, because the application isn’t running. Press F5 to
resume the execution of the application and you will see that the item Cobol is now selected in the
ComboBox control.

The Immediate window is available only while the application’s execution is suspended. To
continue experimenting with it, click the button on the form to evaluate your choice. When the
Stop statement is executed again, you’ll be switched to the Immediate window.

Unlike the Immediate window, the Command window is available at design time. The Com-
mand window allows you to access all the commands of Visual Studio by typing their names in
this window. If you enter the string Edit followed by a period, you will see a list of all commands
of the Edit menu, including the ones that are not visible at the time, and you can invoke any of
these commands and pass arguments to them. For example, if you enter Edit.Find ”Margin” in
the Command window and then press Enter, the first instance of the string Margin will be located
in the open code window. To start the application, you can type Debug.Start. You can add a new
project to the current solution with the AddProj command, and so on. Most developers hardly
ever use this window in designing or debugging applications.

Error List Window
This window is populated by the compiler with error messages, if the code can’t be successfully
compiled. You can double-click an error message in this window, and the IDE will take you to the
line with the statement in error — which you should fix. Change the MsgBox() function name to
MssgBox(). As soon as you leave the line with the error, the name of the function will be under-
lined with a wiggly red line and the following error description will appear in the Error List
window:

Name ’MssgBox’ is not declared

Setting Environment Options
The Visual Studio IDE is highly customizable. I will not discuss all the customization options here,
but I will show you how to change the default settings of the IDE. Open the Tools menu and select
Options (the last item in the menu). The Options dialog box appears, in which you can set all the

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 26

26 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

options regarding the environment. Figure 1.14 shows the options for the fonts of the various
items of the IDE. Here you can set the font for the Text Editor, dialog boxes, toolboxes, and so on.
Select an item in the tree in the left pane list and then set the font for this item in the box below.

Figure 1.14

The Fonts And Colors
options

Figure 1.15 shows the Projects And Solutions options. The top box indicates the default location
for new projects. The Save New Projects When Created check box determines whether the editor
will create a new folder for the project when it’s created. If you uncheck this box, then Visual
Studio will create a folder in the Temp folder. Projects in the Temp folder will be removed when
you run the Disk Cleanup utility to claim more space on your hard drives.

Figure 1.15

The Projects And Solu-
tions options

By default, Visual Studio saves the changes to the current project every time you press F5. You
can change this behavior by setting the Before Building option in the Build And Run page, under
the Project And Solutions branch. If you change this setting, you must save your project from time
to time with the File � Save All command.

Most of the tabs in the Options dialog box are straightforward, and you should take a look at
them. If you don’t like some of the default aspects of the IDE, this is the place to change them. If

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 27

BUILDING A CONSOLE APPLICATION 27

you switch to the Basic item under the Text Editor branch of the tree in the left pane of the Options
dialog box, you will find the Line Numbers option. Select this check box to display numbers
in front of each line in the code window. The Options dialog box contains a lot of options for
customizing your work environment, and it’s worth exploring on your own.

Building a Console Application
Apart from Windows applications, you can use Visual Studio 2008 to build applications that run
in a command prompt window. The command prompt window isn’t really a DOS window, even
though it looks like one. It’s a text window, and the only way to interact with an application is to
enter lines of text and read the output generated by the application, which is displayed in this text
window, one line at a time. This type of application is called a console application, and I’m going
to demonstrate console applications with a single example. We will not return to this type of
application later in the book because it’s not what you’re supposed to do as a Windows developer.

The console application you’ll build in this section, ConsoleApplication1, prompts the user to
enter the name of her favorite language. It then prints the appropriate message on a new line, as
shown in Figure 1.16.

Figure 1.16

A console application
uses the command
prompt window to inter-
act with the user.

Start a new project. In the New Project dialog box, select the template Console Application. You
can also change its default name from ConsoleApplication1 to a more descriptive name. For this
example, don’t change the application’s name.

A console application doesn’t have a user interface, so the first thing you’ll see is the code
editor’s window with the following statements:

Module Module1

Sub Main()

End Sub

End Module

Unlike a Windows application, which is a class, a console application is a module. Main() is
the name of a subroutine that’s executed automatically when you run a console application. The
code you want to execute must be placed between the statements Sub Main() and End Sub. Insert
the statements shown in Listing 1.3 in the application’s Main() subroutine.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 28

28 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Listing 1.3: Console Application

Module Module1
Sub Main()

Console.WriteLine(”Enter your favorite language”)
Dim language As String
language = Console.ReadLine()
language = language.ToUpper
If language = ”VISUAL BASIC” Or

language = ”VB” Or
language = ”VB.NET” Then

Console.WriteLine(”We have a winner!”)
Else

Console.WriteLine(language & ”is not a bad language.”)
End If
Console.WriteLine()
Console.WriteLine()
Console.WriteLine(”PRESS ENTER TO EXIT”)
Console.ReadLine()

End Sub
End Module

This code is quite similar to the code of the equivalent Windows applications we developed
earlier, except that it uses the Console.WriteLine statement to send its output to the command
prompt window instead of a message box.

A console application doesn’t react to events because it has no visible interface. However, it’s
easy to add some basic elements of the Windows interface to a console application. If you change
the Console.WriteLine method call into the MsgBox() function, the message will be displayed in
a message box.

The reason to build a console application is to test a specific feature of the language without
having to build a user interface. Many of the examples in the documentation are console applica-
tions; they demonstrate the topic at hand and nothing more. If you want to test the DateDiff()
function, for example, you can create a new console application and enter the lines of Listing 1.4
in its Main() subroutine.

Listing 1.4: Testing the DateDiff() Function with a Console Application

Sub Main()
Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2000#, #5/15/2008#))
Console.WriteLine(”PRESS ENTER TO EXIT”)
Console.ReadLine()

End Sub

The last two lines will be the same in every console application you write. Without them, the
command prompt window will close as soon as the End Sub statement is reached, and you won’t

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 29

USING CODE SNIPPETS 29

have a chance to see the result. The Console.ReadLine method waits until the user presses the
Enter key.

Console applications are convenient for testing short code segments, but Windows program-
ming is synonymous with designing graphical user interfaces, so you won’t find any more console
applications in this book.

Using Code Snippets
Visual Basic 2008 comes with a lot of predefined code snippets for selected actions, and you can
insert these snippets in your code as needed. Let’s say you want to insert the statements for writing
some text to a file, but you have no idea how to access files. Create an empty line in the listing
(press the Enter key a couple of times at the end of a code line). Then open the Edit menu and
choose IntelliSense � Insert Snippet (or right-click somewhere in the code window and choose
Insert Snippet from the context menu).

You will see on the screen a list of the snippets, organized in folders according to their function,
as shown in Figure 1.17. Select the fundamentals folder, which will display another list of options:
collections and arrays, datatypes, filesystem, and math. Double-click the filesystem item to see a list of
common file-related tasks, as shown in Figure 1.18. Locate the item Write Text To A File in the list
and double-click it to insert the appropriate snippet at the current location in the code window.

Figure 1.17

The code snippets orga-
nized according to their
function

The following snippet will be inserted in your code:

My.Computer.FileSystem.WriteAllText(”C:\test.txt”, ”Text”, True)

To write some text to a file, you need to call the WriteAllText method of the My.Computer
.FileSystem object. You can replace the strings shown in the snippet with actual values. The first
string is the filename, the second string is the text to be written to the file, and the last argument
of the method determines whether the text will be appended to the file (if False) or will overwrite
any existing text (if True).

The snippet shows you the basic statements for performing a common task, and you can edit
the code inserted by Visual Studio as needed. A real-world application would probably prompt

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 30

30 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

the user for a filename via the File common dialog box and then use the filename specified by the
user in the dialog box, instead of a hard-coded file name.

Figure 1.18

Selecting a code snippet
to insert in your code

As you program, you should always try to find out whether there’s a snippet for the task at
hand. Sometimes you can use a snippet without even knowing how it works. Although snippets
can simplify your life, they won’t help you understand the Framework, which is discussed in
detail throughout this book.

Using the My Object
You have probably noticed that the code snippets of Visual Studio use an entity called My, which
is a peculiar object that was introduced with VB 2005 to simplify many programming tasks. As
you saw in the preceding code snippet, the My object allows you to write some text to a file with
a single statement, the WriteAllText method. If you’re familiar with earlier versions of Visual
Basic, you know that you must first open a file, and then write some text to it, and finally close the
file. The My object allows you to perform all these operations with a single statement, as you saw
in the preceding example.

Another example is the Play method, which you can use to play back a WAV file from within
your code:

My.Computer.Audio.Play (”C:\Sounds\CountDown.wav”)

You can also use the following expression to play back a system sound:

My.Computer.Audio.PlaySystemSound(System.Media.SystemSounds.Exclamation)

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 31

USING THE MY OBJECT 31

The method that plays back the sound is the Play method, and the method that writes text to
a file is the WriteAllText method. However, you can’t call them directly through the My object;
they’re not methods of the My object. If they were, you’d have to dig hard to find out the method
you need. The My object exposes six components, which contain their own components. Here’s a
description of the basic components of the My object and the functionality you should expect to
find in each component:

My.Application The Application component provides information about the current appli-
cation. The CommandLineArgs property of My.Application returns a collection of strings, which
are the arguments passed to the application when it was started. Typical Windows applications
aren’t called with command-line arguments, but it’s possible to start an application and pass a
filename as an argument to the application (the document to be opened by the application, for
example). The Info property is an object that exposes properties such as DirectoryPath (the
application’s default folder), ProductName, Version, and so on.

Computer This component of the My object exposes a lot of functionality via a number of
properties, many of which are objects. The My.Computer.Audio component lets you play back
sounds. The My.Computer.Clipboard component lets you access the Clipboard. To find out
whether the Clipboard contains a specific type of data, use the ContainsText, ContainsImage,
ContainsData, and ContainsAudio methods. To retrieve the contents of the Clipboard, use
the GetText, GetImage, GetData, and GetAudioStream methods. Assuming that you have
a form with a TextBox control and a PictureBox control, you can retrieve text or image data
from the Clipboard and display it on the appropriate control with the following statements:

If My.Computer.Clipboard.ContainsImage Then
PictureBox1.Image = My.Computer.Clipboard.GetImage

End If
If My.Computer.Clipboard.ContainsText Then

TextBox2.Text = My.Computer.Clipboard.GetText
End If

You may have noticed that using the My object in your code requires that you write long
statements. You can shorten them substantially via the With statement, as shown next:

With My.Computer.Clipboard
If .ContainsImage Then

PictureBox1.Image = .GetImage
End If
If .ContainsText Then

TextBox2.Text = .GetText
End If

End With

When you’re executing multiple statements on the same object, you can specify the object in
a With statement and call its methods in the block of the With statement by specifying the
method name prefixed with a period. The With statement is followed by the name of the object
to which all following methods apply, and is terminated with the End With statement.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 32

32 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2008

Another property of the My.Computer component is the FileSystem object that exposes all
the methods you need to access files and folders. If you enter the expression My.Computer
.FileSystem followed by a period, you will see all the methods exposed by the FileSystem
component. Among them, you will find DeleteFile, DeleteDirectory, RenameFile,
RenameDirectory, WriteAllText, ReadAllText, and many more. Select a method and then
type the opening parenthesis. You will see the syntax of the method in a ToolTip. The syntax of
the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String)

Just specify the path of the file you want to copy and the new file’s name, and you’re finished.
This statement will copy the specified file to the specified location.

You will notice that the ToolTip box with the syntax of the CopyFile method has multiple ver-
sions, which are listed at the left side of the box along with arrow up and arrow down icons.
Click these two buttons to see the next and previous versions of the method. The second ver-
sion of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String,
overwrite As Boolean)

The overwrite argument specifies whether the method should overwrite the destination file if
it exists.

The third version of the method accepts a different third argument that determines whether the
usual copy animation will be displayed as the file is being copied.

The various versions of the same method differ in the number and/or type of their arguments,
and they’re called overloaded forms of the method. Instead of using multiple method names
for the same basic operation, the overloaded forms of a method allow you to call the same
method name and adjust its behavior by specifying different arguments.

Forms This component lets you access the forms of the current application. You can also
access the application’s forms by name, so the Forms component isn’t the most useful one.

Settings This component lets you access the application settings. These settings apply to the
entire application and are stored in an XML configuration file. The settings are created from
within Visual Studio, and you use the Settings component to read them.

User This component returns information about the current user. The most important
property of the User component is the CurrentPrincipal property, which is an object that
represents the credentials of the current user.

WebServices The WebServices component represents the web services referenced by the
current application.

The My object gives beginners unprecedented programming power and allows you to perform
tasks that would require substantial code if implemented with earlier versions of the language, not
to mention the research it would take to locate the appropriate methods in the Framework. You
can explore the My object on your own and use it as needed. My is not a substitute for learning

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 33

THE BOTTOM LINE 33

the language and the Framework. It can help you initially, but you can’t go far without learning
the methods of the Framework for handling files or any other feature.

Let’s say you want to locate all the files of a specific type in a folder, including its subfolders.
Scanning a folder and its subfolders to any depth is quite a task (you’ll find the code in Chapter
15, ‘‘Accessing Folders and Files’’). You can do the same with a single statement by using the
My object:

Dim files As ReadOnlyCollection(Of String)
files = My.Computer.FileSystem.GetFiles(”D:\Data”, True, ”*.txt”)

The GetFiles method populates the files collection with the pathnames of the text files in
the folder D:\Data and its subfolders. However, it won’t help you if you want to process each file
in place. Moreover, this GetFiles method is synchronous: If the folder contains many subfolders
with many files, it will block the interface until it retrieves all the files. In Chapter 15, you’ll see the
code that retrieves filenames and adds them to a control as it goes along.

If you’re already familiar with VB, you may think that the My object is an aid for the absolute
beginner or the nonprogrammer. This isn’t true. VB is about productivity, and the My object can
help you be more productive with your daily tasks, regardless of your knowledge of the language
or programming skills. If you can use My to save a few (or a few dozen) statements, do it. There’s
no penalty for using the My object, because the compiler replaces the methods of the My object
with the equivalent method calls to the Framework.

The Bottom Line

Navigate the integrated development environment of Visual Studio. To simplify the pro-
cess of application development, Visual Studio provides an environment that’s common to
all languages, known as an integrated development environment (IDE). The purpose of the
IDE is to enable the developer to do as much as possible with visual tools, before writing code.
The IDE provides tools for designing, executing, and debugging your applications. It’s your
second desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Understand the basics of a Windows application. A Windows application consists of a
visual interface and code. The visual interface is what users see at runtime: a form with controls
with which the user can interact — by entering strings, checking or clearing check boxes, click-
ing buttons, and so on. The visual interface of the application is designed with visual tools. The
visual elements incorporate a lot of functionality, but you need to write some code to react to
user actions.

Master It Describe the process of building a simple Windows application.

Petroutsos c01.tex V2 - 01/28/2008 11:43am Page 34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

